Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 459
Filtrar
1.
Psychopharmacology (Berl) ; 241(3): 489-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38214743

RESUMO

RATIONALE: The 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT, known online as "Moxy") is a new psychedelic tryptamine first identified on Italian national territory in 2014. Its hallucinogen effects are broadly well-known; however, only few information is available regarding its pharmaco-toxicological effects. OBJECTIVES: Following the seizure of this new psychoactive substances by the Arm of Carabinieri and the occurrence of a human intoxication case, in the current study we had the aim to characterize the in vivo acute effects of systemic administration of 5-MeO-MiPT (0.01-30 mg/kg i.p.) on sensorimotor (visual, acoustic, and overall tactile) responses, thermoregulation, and stimulated motor activity (drag and accelerod test) in CD-1 male mice. We also evaluated variation on sensory gating (PPI, prepulse inhibition; 0.01-10 mg/kg i.p.) and on cardiorespiratory parameters (MouseOx and BP-2000; 30 mg/kg i.p.). Lastly, we investigated the in silico ADMET (absorption, distribution, metabolism, excretion, toxicity) profile of 5-MeO-MiPT compared to 5-methoxy-N,N-diisopropyltryptamine (5-MeO-DIPT) and N,N-dimethyltryptamine (DMT). RESULTS: This study demonstrates that 5-MeO-MiPT dose-dependently inhibits sensorimotor and PPI responses and, at high doses, induces impairment of the stimulated motor activity and cardiorespiratory changes in mice. In silico prediction shows that the 5-MeO-MiPT toxicokinetic profile shares similarities with 5-MeO-DIPT and DMT and highlights a cytochrome risk associated with this compound. CONCLUSIONS: Consumption of 5-MeO-MiPT can affect the ability to perform activities and pose a risk to human health status, as the correspondence between the effects induced in mice and the symptoms occurred in the intoxication case suggests. However, our findings suggest that 5-MeO-MiPT should not be excluded from research in the psychiatric therapy field.


Assuntos
5-Metoxitriptamina/análogos & derivados , Alucinógenos , Humanos , Camundongos , Masculino , Animais , Alucinógenos/toxicidade , Triptaminas/toxicidade
2.
J Appl Toxicol ; 44(2): 216-234, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37646119

RESUMO

Serotonergic psychedelics, such as lysergic acid diethylamide (LSD), psilocybin, dimethyltryptamine (DMT), and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are currently being investigated for the treatment of psychiatric disorders such as depression and anxiety. Clinical trials with psilocybin and LSD have shown improvement in emotional and psychological scores. Although these drugs are reported to be safe in a controlled environment (such as clinical trials), exposure to low doses of these drugs can result in psychedelic effects, and therefore, occupational safety is an important consideration to prevent adverse effects in the workplace from low daily exposure. This article will discuss the factors involved in the derivation of occupational exposure limits (OELs) and risk assessment of these psychedelic drugs. To support the OEL derivations of psychedelic drugs, information regarding their mechanism of action, adverse effect profiles, pharmacokinetics, clinical effects, and nonclinical toxicity were considered. Additionally, psilocybin and LSD, which are the most extensively researched psychedelic substances, are employed as illustrative examples in case studies. The OELs derived for psilocybin and for LSD are 0.05 and 0.002 µg/m3 , respectively, which indicates that these are highly hazardous compounds, and it is important to take into account suitable safety measures and risk-management strategies in order to minimize workplace exposure.


Assuntos
Alucinógenos , Humanos , Alucinógenos/toxicidade , Alucinógenos/uso terapêutico , Psilocibina/toxicidade , Psilocibina/uso terapêutico , Dietilamida do Ácido Lisérgico/toxicidade , Dietilamida do Ácido Lisérgico/uso terapêutico , N,N-Dimetiltriptamina , Medição de Risco
4.
Trends Pharmacol Sci ; 44(10): 664-673, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659901

RESUMO

Psychedelic drugs have experienced an unprecedented surge in recreational use within the past few years. Among recreational users, the risks of psychedelic use by pregnant and breastfeeding women are severely understudied and there is little information on the potential teratogenic effects of these drugs. We provide an overview of the previous data on psychedelic teratogenicity from rodent studies and human surveys, discuss their limitations, and propose the utility of the zebrafish as a potential effective model for investigating psychedelic teratogenicity. Recent years have validated the use of zebrafish in the study of fetal exposure and developmental biology; we highlight these properties of the zebrafish for its suitability in psychedelic toxicity research.


Assuntos
Alucinógenos , Gravidez , Animais , Humanos , Feminino , Alucinógenos/toxicidade , Peixe-Zebra
5.
ACS Chem Neurosci ; 14(5): 875-884, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753397

RESUMO

In recent years, psychedelics have garnered significant interest as therapeutic agents for treating diverse neuropsychiatric disorders. However, the potential for these compounds to produce developmental neurotoxicity has not been rigorously assessed, and much of the available safety data is based on epidemiological studies with limited experimental testing in laboratory animal models. Moreover, the experimental safety data available thus far have focused on adult organisms, and the few studies conducted using developing organisms have tested a limited number of compounds, precluding direct comparisons between various chemical scaffolds. In the present study, 13 psychoactive compounds of different chemical or pharmacological classes were screened in a larval zebrafish model for teratological and behavioral abnormalities following acute and chronic developmental exposures. We found that the psychedelic tryptamines and ketamine were less neurotoxic to larval zebrafish than LSD and psychostimulants. Our work, which leverages the advantage of using zebrafish for higher throughput toxicity screening, provides a robust reference database for comparing the neurotoxicity profiles of novel psychedelics currently under development for therapeutic applications.


Assuntos
Alucinógenos , Ketamina , Animais , Alucinógenos/toxicidade , Peixe-Zebra , Larva , Modelos Animais
6.
Drug Chem Toxicol ; 46(3): 430-440, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35296205

RESUMO

Two synthetic phenylethylamines, N-methyl-1-(naphthalen-2-yl)propan-2-amine (MNA) and 1-phenyl-2-pyrrolidinylpentane (prolintane), are being abused by people seeking hallucinogens for pleasure. These new psychotropic substances may provoke problems because there is no existing information about their toxicity and pharmacological behaviors. Therefore, we evaluated the safety of nerves and cardiovascular systems by determining toxicity after MNA and prolintane drugs administrations to mice and rat. Consequently, side effects such as increased spontaneous motion and body temperature were observed in oral administration of MNA. In addition, both substances reduced motor coordination levels. The IHC tests were conducted to see whether the immune response also shows abnormalities in brain tissue compared to the control group. It has been confirmed that the length of allograft inflammatory factor 1(IBA-1), an immune antibody known as microglia marker, has been shortened. We identified that a problem with the contact between synapses and neurons might be possibly produced. In the assessment of the cardiac toxicity harmfulness, no substances have been confirmed to be toxic to myocardial cells, but at certain concentrations, they have caused the QT prolongation, an indicator of ventricular arrhythmia. In addition, the hERG potassium channel, the biomarker of the QT prolongation, has been checked for inhibition. The results revealed that the possibility of QT prolongation through the hERG channel could not be excluded, and the two substances can be considered toxic that may cause ventricular arrhythmia. In sum, this study demonstrated that the possibility of toxicity in MNA and prolintane compounds might bring many harmful effects on nerves and hearts.


Assuntos
Cardiotoxicidade , Alucinógenos , Síndrome do QT Longo , Síndromes Neurotóxicas , Fenetilaminas , Animais , Camundongos , Ratos , Cardiotoxicidade/etiologia , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Alucinógenos/toxicidade , Síndrome do QT Longo/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Fenetilaminas/toxicidade
7.
Naunyn Schmiedebergs Arch Pharmacol ; 396(2): 275-287, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36319858

RESUMO

The use of recreational drugs like ephedrine, norephedrine, 3,4-methylenedioxymethamphetamine (MDMA), and mescaline can lead to intoxication and, at worst, to death. One reason for a fatal course of intoxication with these drugs might lie in cardiac arrhythmias. To the best of our knowledge, their inotropic effects have not yet been studied in isolated human cardiac preparations. Therefore, we measured inotropic effects of the hallucinogenic drugs ephedrine, norephedrine, mescaline, and MDMA in isolated mouse left atrial (mLA) and right atrial (mRA) preparations as well as in human right atrial (hRA) preparations obtained during cardiac surgery. Under these experimental conditions, ephedrine, norephedrine, and MDMA increased force of contraction (mLA, hRA) and beating rate (mRA) in a time- and concentration-dependent way, starting at 1-3 µM but these drugs were less effective than isoprenaline. Mescaline alone or in the presence of phosphodiesterase inhibitors did not increase force in mLA or hRA. The positive inotropic effects of ephedrine, norephedrine, or MDMA were accompanied by increases in the rate of tension and relaxation and by shortening of time of relaxation and, moreover, by an augmented phosphorylation state of the inhibitory subunit of troponin in hRA. All effects were greatly attenuated by cocaine (10 µM) or propranolol (10 µM) treatment. In summary, the hallucinogenic drugs ephedrine, norephedrine, and MDMA, but not mescaline, increased force of contraction and increased protein phosphorylation presumably, in part, by a release of noradrenaline in isolated human atrial preparations and thus can be regarded as indirect sympathomimetic drugs in the human atrium.


Assuntos
Fibrilação Atrial , Alucinógenos , N-Metil-3,4-Metilenodioxianfetamina , Humanos , Camundongos , Animais , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Mescalina/farmacologia , Alucinógenos/toxicidade , Efedrina/farmacologia , Fenilpropanolamina/farmacologia , Átrios do Coração , Contração Miocárdica
8.
Exp Neurol ; 356: 114148, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35732217

RESUMO

The therapeutic use of classical psychedelic substances such as d-lysergic acid diethylamide (LSD) surged in recent years. Studies in rodents suggest that these effects are produced by increased neural plasticity, including stimulation of the mTOR pathway, a key regulator of metabolism, plasticity, and aging. Could psychedelic-induced neural plasticity be harnessed to enhance cognition? Here we show that LSD treatment enhanced performance in a novel object recognition task in rats, and in a visuo-spatial memory task in humans. A proteomic analysis of human brain organoids showed that LSD affected metabolic pathways associated with neural plasticity, including mTOR. To gain insight into the relation of neural plasticity, aging and LSD-induced cognitive gains, we emulated the experiments in rats and humans with a neural network model of a cortico-hippocampal circuit. Using the baseline strength of plasticity as a proxy for age and assuming an increase in plasticity strength related to LSD dose, the simulations provided a good fit for the experimental data. Altogether, the results suggest that LSD has nootropic effects.


Assuntos
Alucinógenos , Nootrópicos , Animais , Alucinógenos/toxicidade , Humanos , Dietilamida do Ácido Lisérgico/farmacologia , Proteômica , Ratos , Serina-Treonina Quinases TOR
9.
J Anal Toxicol ; 46(5): 461-470, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35246686

RESUMO

The phencyclidine derivative 3-methoxyphencyclidine (3-MeO-PCP) is a potent dissociative hallucinogen. Sought for recreational use as a novel psychoactive substance, it can also induce acute psychological agitation and pathophysiological cardiorespiratory effects. Due to the harms associated with its use, 3-MeO-PCP was added to the "Green List" of materials covered by the 1971 Convention on Psychotropic Substances as a Schedule II substance by the United Nations Commission on Narcotic Drugs in April 2021. There have been 15 previous reports of fatal intoxications following 3-MeO-PCP use, but only one was attributable to 3-MeO-PCP intoxication alone. In this report, we detail the first fatality due to 3-MeO-PCP intoxication to be reported in the UK, along with a review of the surrounding literature. While the blood concentrations associated with 3-MeO-PCP toxicity and fatality remain unclear, by providing details of sample collection and storage conditions, this case will aid in future interpretations. Furthermore, this case suggests that 3-MeO-PCP toxicity may be exacerbated by exercise. Users of 3-MeO-PCP should be cautioned against its use as a "club drug" or in a similar setting where elevations in heart rate, body temperature and blood pressure may occur.


Assuntos
Alucinógenos , Fenciclidina , Cromatografia Líquida , Alucinógenos/toxicidade , Fenciclidina/análogos & derivados , Reino Unido
10.
Sci Rep ; 12(1): 2939, 2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190675

RESUMO

4-Iodo-2,5-dimethoxy-N-(2-methoxybenzyl)phenethylamine (25I-NBOMe) is a new psychoactive substance with strong hallucinogenic properties. Our previous data reported increased release of dopamine, serotonin, and glutamate after acute injections and a tolerance development in the neurotransmitters release and rats' behavior after chronic treatment with 25I-NBOMe. The recreational use of 25I-NBOMe is associated with severe intoxication and deaths in humans. There is no data about 25I-NBOMe in vivo toxicity towards the brain tissue. In this article 25I-NBOMe-crossing through the blood-brain barrier (BBB), the impact on DNA damage, apoptosis induction, and changes in the number of cortical and hippocampal cells were studied. The presence of 25I-NBOMe in several brain regions shortly after the drug administration and its accumulation after multiple injections was found. The DNA damage was detected 72 h after the chronic treatment. On the contrary, at the same time point apoptotic signal was not identified. A decrease in the number of glial but not in neural cells in the frontal (FC) and medial prefrontal cortex (mPFC) was observed. The obtained data indicate that 25I-NBOMe passes easily across the BBB and accumulates in the brain tissue. Observed oxidative DNA damage may lead to the glial cells' death.


Assuntos
Encéfalo/efeitos dos fármacos , Dimetoxifeniletilamina/análogos & derivados , Alucinógenos/toxicidade , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Dano ao DNA/efeitos dos fármacos , Dimetoxifeniletilamina/administração & dosagem , Dimetoxifeniletilamina/metabolismo , Dimetoxifeniletilamina/toxicidade , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Injeções , Neuroglia/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Serotonina/metabolismo
11.
Psychopharmacology (Berl) ; 239(5): 1251-1261, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33501595

RESUMO

BACKGROUND: Synthetic cannabinoids (SCs) are the largest class of novel psychoactive substances (NPS) and are associated with an increased risk of overdosing and adverse events such as psychosis. JWH-018 is one of the earliest SCs and still widely available in large parts of the world. Controlled studies to assess the safety and behavioural profiles of SCs are extremely scarce. AIM: The current study was designed to assess the psychotomimetic effects of a moderate dose of JWH-018. METHODS: Twenty-four healthy participants (10 males, 14 females) entered a placebo-controlled, double blind, within-subjects trial and inhaled vapour of placebo or 75µg/kg bodyweight JWH-018. To ascertain a minimum level of intoxication, a booster dose of JWH-018 was administered on an as-needed basis. The average dose of JWH-018 administered was 5.52 mg. Subjective high, dissociative states (CADSS), psychedelic symptoms (Bowdle), mood (POMS) and cannabis reinforcement (SCRQ) were assessed within a 4.5-h time window after drug administration. RESULTS: JWH-018 caused psychedelic effects, such as altered internal and external perception, and dissociative effects, such as amnesia, derealisation and depersonalisation and induced feelings of confusion. CONCLUSION: Overall, these findings suggest that a moderate dose of JWH-018 induces pronounced psychotomimetic symptoms in healthy participants with no history of mental illness, which confirms that SCs pose a serious risk for public health.


Assuntos
Canabinoides , Alucinógenos , Transtornos Psicóticos , Canabinoides/toxicidade , Feminino , Alucinógenos/toxicidade , Humanos , Indóis , Masculino , Naftalenos/toxicidade
12.
Psychopharmacology (Berl) ; 239(6): 1881-1891, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34251464

RESUMO

RATIONALE: In recent years, psychedelic substances with serotonergic mechanisms have accumulated substantial evidence that they may provide therapeutic benefits for people suffering with psychiatric symptoms. Psychiatric disorders targeted by these psychedelic-assisted therapies are managed with serotonergic drugs like selective serotonin reuptake inhibitors (SSRIs) as the current standard of care, so it is important to evaluate the potential risks of drug-drug interactions and serotonin toxicity (ST) between these agents. OBJECTIVES: A critical evaluation of the scientific literature is necessary to delineate the risks of ST when combining psychedelics with available serotonergic pharmacotherapy options. This review article describes signs and symptoms of ST, characterizes mechanisms of ST risk, summarizes what is known about serotonergic psychedelic drug interactions, and outlines potential management strategies. RESULTS: True ST typically occurs with a serotonergic drug overdose or in combinations in which a drug that can increase intrasynaptic serotonin is combined with a monoamine oxidase inhibitor (MAOI). Serotonergic psychotropics that do not contain MAOIs are low risk in combination with psychedelics that also do not contain MAOIs. Signs and symptoms warranting immediate medical attention include myoclonus, extreme and fluctuating vital signs, agitation or comatose mental state, muscle rigidity, pronounced hyperthermia (fever), and/or seizure activity. CONCLUSIONS: Serotonin-related adverse reactions exist along a spectrum with serotonin syndrome being the most severe manifestations of ST. Due to varying serotonergic mechanisms of psychedelics and psychotropics, with varying propensities to increase intrasynaptic serotonin, some combinations may present a significant risk for serotonin toxicity (ST) while others are likely benign.


Assuntos
Alucinógenos , Alucinógenos/toxicidade , Humanos , Inibidores da Monoaminoxidase/efeitos adversos , Serotonina , Serotoninérgicos/efeitos adversos , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos
13.
J Clin Pharmacol ; 61 Suppl 2: S100-S113, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34396556

RESUMO

Hallucinogens constitute a unique class of substances that cause changes in the user's thoughts, perceptions, and mood through various mechanisms of action. Although the serotonergic hallucinogens such as lysergic acid diethylamide, psilocybin, and N,N-dimethyltryptamine have been termed the classical hallucinogens, many hallucinogens elicit their actions through other mechanisms such as N-methyl-D-aspartate receptor antagonism, opioid receptor agonism, or inhibition of the reuptake of monoamines including serotonin, norepinephrine, and dopamine. The aim of this article is to compare the pharmacologic similarities and differences among substances within the hallucinogen class and their impact on physical and psychiatric effects. Potential toxicities, including life-threatening and long-term effects, will be reviewed.


Assuntos
Alucinógenos/farmacologia , Monoaminas Biogênicas/metabolismo , Alucinógenos/química , Alucinógenos/toxicidade , Humanos , Dietilamida do Ácido Lisérgico/farmacologia , Psilocibina/farmacologia , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Opioides/efeitos dos fármacos , Receptores Opioides/metabolismo , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Triptaminas/farmacologia , Triptaminas/toxicidade
14.
Int J Mol Sci ; 22(14)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34299119

RESUMO

The rates of gestational cannabis use have increased despite limited evidence for its safety in fetal life. Recent animal studies demonstrate that prenatal exposure to Δ9-tetrahydrocannabinol (Δ9-THC, the psychoactive component of cannabis) promotes intrauterine growth restriction (IUGR), culminating in postnatal metabolic deficits. Given IUGR is associated with impaired hepatic function, we hypothesized that Δ9-THC offspring would exhibit hepatic dyslipidemia. Pregnant Wistar rat dams received daily injections of vehicular control or 3 mg/kg Δ9-THC i.p. from embryonic day (E) 6.5 through E22. Exposure to Δ9-THC decreased the liver to body weight ratio at birth, followed by catch-up growth by three weeks of age. At six months, Δ9-THC-exposed male offspring exhibited increased visceral adiposity and higher hepatic triglycerides. This was instigated by augmented expression of enzymes involved in triglyceride synthesis (ACCα, SCD, FABP1, and DGAT2) at three weeks. Furthermore, the expression of hepatic DGAT1/DGAT2 was sustained at six months, concomitant with mitochondrial dysfunction (i.e., elevated p66shc) and oxidative stress. Interestingly, decreases in miR-203a-3p and miR-29a/b/c, both implicated in dyslipidemia, were also observed in these Δ9-THC-exposed offspring. Collectively, these findings indicate that prenatal Δ9-THC exposure results in long-term dyslipidemia associated with enhanced hepatic lipogenesis. This is attributed by mitochondrial dysfunction and epigenetic mechanisms.


Assuntos
Dronabinol/toxicidade , Dislipidemias/patologia , Alucinógenos/toxicidade , Lipogênese , Fígado/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Dislipidemias/induzido quimicamente , Feminino , Fígado/efeitos dos fármacos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar
15.
Int J Mol Sci ; 22(14)2021 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-34299276

RESUMO

1-cyclohexyl-x-methoxybenzene is a novel psychoactive substance (NPS), first discovered in Europe in 2012 as unknown racemic mixture of its three stereoisomers: ortho, meta and para. Each of these has structural similarities with the analgesic tramadol and the dissociative anesthetic phencyclidine. In light of these structural analogies, and based on the fact that both tramadol and phencyclidine are substances that cause toxic effects in humans, the aim of this study was to investigate the in vitro and in vivo pharmacodynamic profile of these molecules, and to compare them with those caused by tramadol and phencyclidine. In vitro studies demonstrated that tramadol, ortho, meta and para were inactive at mu, kappa and delta opioid receptors. Systemic administration of the three stereoisomers impairs sensorimotor responses, modulates spontaneous motor activity, induces modest analgesia, and alters thermoregulation and cardiorespiratory responses in the mouse in some cases, with a similar profile to that of tramadol and phencyclidine. Naloxone partially prevents only the visual sensorimotor impairments caused by three stereoisomers, without preventing other effects. The present data show that 1-cyclohexyl-x-methoxybenzene derivatives cause pharmaco-toxicological effects by activating both opioid and non-opioid mechanisms and suggest that their use could potentially lead to abuse and bodily harm.


Assuntos
Analgésicos Opioides/toxicidade , Anisóis/toxicidade , Derivados de Benzeno/toxicidade , Alucinógenos/toxicidade , Fenciclidina/toxicidade , Psicotrópicos/toxicidade , Receptores Opioides/metabolismo , Tramadol/toxicidade , Analgésicos Opioides/química , Animais , Anisóis/química , Derivados de Benzeno/química , Células Cultivadas , Cricetinae , Alucinógenos/química , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos ICR , Modelos Animais , Fenciclidina/química , Psicotrópicos/química , Tramadol/química
16.
J Chem Neuroanat ; 116: 101993, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34147620

RESUMO

OBJECTIVE: We studied the role of the P2X7 receptor on cognitive dysfunction in a mouse model of schizophrenia. METHODS: An adult mouse model was established by treatment with phencyclidine (PCP), an N-methyl-D-aspartate (NMDA) receptor antagonist. Young mice were divided into three groups: 1) the control (saline-injected) group; 2) experimental 5 mg/kg PCP-injected group; and 3) experimental 10 mg/kg PCP-injected group. The mice were subjected to the open-field and Morris water maze tests at 7 weeks. After intraperitoneal injection of the P2X7 receptor antagonist JNJ-47965567, the behaviour tests were performed again. Samples were taken after testing. The P2X7 receptor protein and mRNA expression levels were detected by immunohistochemistry, Western blotting and PCR. RESULTS: This study revealed that the infant sub-chronic PCP mice model showed severe spatial learning and memory impairment in the Morris water maze and schizophrenia-like symptoms (hypermotor behaviour) in the open-field test. The P2X7 receptor protein was highly expressed in the sub-chronic PCP mouse model and more highly expressed in the hippocampus than the prefrontal lobe. After the P2X7 receptor was blocked with JNJ-47965567, P2X7 receptor protein and mRNA expression in the frontal lobe were significantly increased, and the spatial memory impairment and hypermotor behaviour induced by PCP were reversed. CONCLUSION: PCP-induced cognitive impairment can be significantly improved by antagonizing the P2X7 receptor. Therefore, we believe that the P2X7 receptor plays an important role in the cognition of schizophrenic-like mice.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Fenciclidina/toxicidade , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Receptores Purinérgicos P2X7/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Animais , Animais Recém-Nascidos , Alucinógenos/toxicidade , Injeções Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Piperazinas/administração & dosagem , Roedores , Esquizofrenia/induzido quimicamente
17.
J Chem Neuroanat ; 116: 101986, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34119664

RESUMO

MDMA (3,4-Methylenedioxymethamphetamine) is a common recreational drug of abuse which causes neurodegeneration. Nicotine and modafinil provide antioxidant and neuroprotective properties and may be beneficial in the management of MDMA-induced neurotoxicity. The purpose of this study was to characterize how acute and chronic administration of nicotine and/or modafinil exert protective effects against the MDMA-induced impaired cognitive performance, oxidative stress, and neuronal loss. Adult male rats were divided into three groups, namely control, MDMA and treatment (modafinil and/or nicotine). MDMA (10 mg/kg) was administered intraperitoneally during a three-week schedule (two times/day for two consecutive days/week). The treated-groups were classified based on the acute or chronic status of treatment. In the groups which underwent acute treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected just prior to the MDMA administration (acute nicotine (NA), acute modafinil (MA), and acute nicotine and modafinil (NMA)). In the rats which received chronic treatments, nicotine (0.5 mg/kg) and/or modafinil (100 mg/kg) were injected every day during the three week-schedule administration of MDMA (chronic nicotine (NC), chronic modafinil (MC), and chronic nicotine and modafinil (NMC)). Learning and memory performance, as well as avoidance response, were assessed by Morris water maze and Shuttle box, respectively. Our findings indicate enhanced learning and memory and avoidance response in the NMC group. By TUNEL test and Cresyl Violet staining we evaluated neuronal loss and apoptosis in the hippocampal CA1 and found increased neuronal viability in the NMC group. On the other hand, chronic administration of modafinil and nicotine significantly down-regulated the caspase 3 and up-regulated both BDNF and TrkB levels in the MDMA-received rats. The serum levels of glutathione peroxidase (GPx) and total antioxidant capacity (TAC) were evaluated and we found that the alterations of serum levels of GPx and TAC were considerably prevented in the NMC group. The overall results indicate that nicotine and modafinil co-administration rescued brain from MDMA-induced neurotoxicity. We suggest that nicotine and modafinil combination therapy could be considered as a possible treatment to reduce the neurological disorders induced by MDMA.


Assuntos
Hipocampo/efeitos dos fármacos , Modafinila/administração & dosagem , N-Metil-3,4-Metilenodioxianfetamina/toxicidade , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Nicotina/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Quimioterapia Combinada , Alucinógenos/toxicidade , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Neurônios/patologia , Neuroproteção/fisiologia , Ratos
18.
Exp Neurol ; 343: 113778, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34090893

RESUMO

New psychoactive stimulants and psychedelics continue to play an important role on the illicit new psychoactive substance (NPS) market. Designer stimulants and psychedelics both affect monoaminergic systems, although by different mechanisms. Stimulant NPS primarily interact with monoamine transporters, either as inhibitors or as substrates. Psychedelic NPS most potently interact with serotonergic receptors and mediate their mind-altering effects mainly through agonism at serotonin 5-hydroxytryptamine-2A (5-HT2A) receptors. Rarely, designer stimulants and psychedelics are associated with potentially severe adverse effects. However, due to the high number of emerging NPS, it is not possible to investigate the toxicity of each individual substance in detail. The brain is an organ particularly sensitive to substance-induced toxicity due to its high metabolic activity. In fact, stimulant and psychedelic NPS have been linked to neurological and cognitive impairments. Furthermore, studies using in vitro cell models or rodents indicate a variety of mechanisms that could potentially lead to neurotoxic damage in NPS users. Cytotoxicity, mitochondrial dysfunction, and oxidative stress may potentially contribute to neurotoxicity of stimulant NPS in addition to altered neurochemistry. Serotonin 5-HT2A receptor-mediated toxicity, oxidative stress, and activation of mitochondrial apoptosis pathways could contribute to neurotoxicity of some psychedelic NPS. However, it remains unclear how well the current preclinical data of NPS-induced neurotoxicity translate to humans.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Alucinógenos/toxicidade , Síndromes Neurotóxicas/patologia , Psicotrópicos/toxicidade , Animais , Estimulantes do Sistema Nervoso Central/metabolismo , Alucinógenos/metabolismo , Humanos , Síndromes Neurotóxicas/metabolismo , Psicotrópicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina/toxicidade
19.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562259

RESUMO

Cannabis use among pregnant women is increasing worldwide along with permissive sociocultural attitudes toward it. Prenatal cannabis exposure (PCE), however, is associated with adverse outcome among offspring, ranging from reduced birth weight to child psychopathology. We have previously shown that male rat offspring prenatally exposed to Δ9-tetrahydrocannabinol (THC), a rat model of PCE, exhibit extensive molecular, cellular, and synaptic changes in dopamine neurons of the ventral tegmental area (VTA), resulting in a susceptible mesolimbic dopamine system associated with a psychotic-like endophenotype. This phenotype only reveals itself upon a single exposure to THC in males but not females. Here, we characterized the impact of PCE on female behaviors and mesolimbic dopamine system function by combining in vivo single-unit extracellular recordings in anesthetized animals and ex vivo patch clamp recordings, along with neurochemical and behavioral analyses. We find that PCE female offspring do not show any spontaneous or THC-induced behavioral disease-relevant phenotypes. The THC-induced increase in dopamine levels in nucleus accumbens was reduced in PCE female offspring, even when VTA dopamine activity in vivo and ex vivo did not differ compared to control. These findings indicate that PCE impacts mesolimbic dopamine function and its related behavioral domains in a sex-dependent manner and warrant further investigations to decipher the mechanisms determining this sex-related protective effect from intrauterine THC exposure.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dopamina/metabolismo , Dronabinol/toxicidade , Sistema Límbico/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/patologia , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Feminino , Alucinógenos/toxicidade , Sistema Límbico/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/patologia
20.
Psychopharmacology (Berl) ; 238(3): 639-653, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33420592

RESUMO

RATIONALE: Memory plays a central role in the psychedelic experience. The spontaneous recall and immersive reliving of autobiographical memories has frequently been noted by researchers and clinicians as a salient phenomenon in the profile of subjective effects of classic psychedelic drugs such as psilocybin, LSD, and ayahuasca. The ability for psychedelics to provoke vivid memories has been considered important to their clinical efficacy. OBJECTIVE: This review aims to examine and aggregate the findings from experimental, observational, and qualitative studies on the acute modulation of memory by classic psychedelics in humans. METHOD: A literature search was conducted using PubMed and PsycInfo as well as manual review of references from eligible studies. Publications reporting quantitative and/or qualitative findings were included; animal studies and case reports were excluded. RESULTS: Classic psychedelics produce dose-dependently increasing impairments in memory task performance, such that low doses produce no impairment and higher doses produce increasing levels of impairment. This pattern has been observed in tasks assessing spatial and verbal working memory, semantic memory, and non-autobiographical episodic memory. Such impairments may be less pronounced among experienced psychedelic users. Classic psychedelics also increase the vividness of autobiographical memories and frequently stimulate the recall and/or re-experiencing of autobiographical memories, often memories that are affectively intense (positively or negatively valenced) and that had been avoided and/or forgotten prior to the experience. CONCLUSIONS: Classic psychedelics dose-dependently impair memory task performance but may enhance autobiographical memory. These findings are relevant to the understanding of psychological mechanisms of action of psychedelic-assisted psychotherapy.


Assuntos
Alucinógenos/toxicidade , Dietilamida do Ácido Lisérgico/toxicidade , Transtornos da Memória/induzido quimicamente , Psilocibina/toxicidade , Banisteriopsis/química , Relação Dose-Resposta a Droga , Humanos , Memória Episódica , Memória de Curto Prazo/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Psicoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...